ISOMORPHOLOGY: An Introduction to Principles and Practice

20 04 2016

By Gemma Anderson

What is Isomorphology?

Isomorphology is a comparative method of enquiry into the shared forms of animal, mineral and vegetable morphologies.  The concept of Isomorphology has developed out of observational and intellectual enquiry. After years of drawing from scientific collections, such as those at the Natural History Museum (NHM) and Kew Gardens, I have identified a number of forms and symmetries that can be found in animal, mineral and vegetable species.

Isomorphology is a new term which I have coined. It is derived from ‘Isomorphism’; a mathematical and biological concept. Etymology, from Greek:

Isos– ‘Same/Equal’

Morphe– ‘Form’

Logos– ‘Study’

As a holistic approach to classification, Isomorphology runs parallel to scientific practice while belonging to the domain of artistic creation.  It is complementary to science: it addresses what is left out of scientific classification of animal, vegetable and mineral morphologies as distinct and unrelated. Drawing reveals the shared forms of conventionally unrelated species and the drawing process is intrinsic to the epistemological value of Isomorphology.

fig.28d.iso72(Fig 1)

Isomorphology publication. (c) Anderson

Is Isomorphology Scientific?

Isomorphology relies on science while at the same time building an altered perspective which liberates form from the confines of scientific identification. Isomorphology offers an alternative and visual approach to classification and acts as a reminder that there are many possible ways to find order in the world.  While connected to and derived from the observable, Isomorphology is a symbolic system and a mode of abstraction.  It can be understood as a visual language, which is coextensive with other modes of classification.

Isomorphology in practice

In its practical approach, Isomorphology incorporates both artistic and scientific methods and theories. I found myself reflecting upon the experience of drawing specimens at the Natural History Museum in my Journal, realizing that my process paralleled the process of scientific taxonomy.

fig.19.g.Gemma Anderson-72(Fig 2)

Isomorphology study at the Slacker lab, Darwin Centre, Natural History Museum. (c) Anderson

As noted in my Journal:

The work begins as an abstract idea of form (like the idea of a ‘type’) which leads to the reality of certain specimens which have been classified as this type. The reality of the individual specimen’s variation on the ‘type’ or ‘form’ is what the taxonomist has to deal with, and what I have to deal with through the observational drawing process. This is a difficult process which prompts reflection on ‘ideas’ and ‘ideals’ and the reality of achieving these through practice. Somehow, working through the difficulties of the observable reality allows for an expanding and evolving conception of what the work is, and this is how the conceptual process often evolves- inside the practice.

Drawing from life is always an experiment because no matter how well formed the image or idea in your mind’s eye may be- the individuality of the species is always unimaginable and therein lies the challenge. The rewarding aspect of observational drawing is that the observer can never entirely predict how the work will develop, as it is impossible to imagine the individual nature of specimens. The individual variations are what brings the challenge and surprise to the work, and to the classification process (and this is true in scientific taxonomy). What occurs is a playful improvisation, motivated by an idea, and realized through dealing with the real.

fig.19b-72(Fig 3)

Study of specimens with spiral morphology at the Slacker Lab, Darwin Center, Natural History Museum. (c) Anderson

The drawing process:

  1. Observation

Drawing and handling each specimen enables close observation that reveals unexpected comparisons of form. Observational drawing involves hand-eye coordination, analysis, delineation, abstraction, improvisation, collage and concentration.  My perception of the object is in a process of transition from experience to judgment, insight to application.

  1. Trained Judgement

Concentrated observation creates new perceptual knowledge. The morphology is observed in detail, activating the process of comparison; each form observed joins a bank of knowledge in the observer’s mind and each new drawing experience triggers a different formal memory stored in this bank. Each drawing adds value to each drawing previously made, and vice versa.

  1. Pattern recognition

A necessary process of abstraction occurs within the observational drawing process. All knowledge of the object and its conventional context and name are forgotten; what is left is an involvement in the form of the specimen. The concentration shifts from drawing the whole thing to drawing a series of parts. This process, which concentrates on form, trains the artist to abstract, to draw and to play with the form, eventually without observing the object – entering a new realm of understanding.

fig.20.a.grant-72(Fig 4)

Isomorphology workshop at the Grant Museum. (c) Anderson

Isomorphology as an approach to classification

Isomorphology works as a parallel system to scientific classification. It uses a dynamic artistic practice to emphasize connections rather than divisions, between animal, mineral and vegetable species. In the same way that Isomorphology enlivens the space around scientific taxonomy, each drawing enlivens and re-examines a specimen from the museum collections.

The model of Isomorphology I am proposing shares with the scientific model an important emphasis on morphology and observation, but asks different questions about the relationships between species.  It relies on the discovery of shared forms in nature and on the invention of a practice to classify these forms. In developing the skill of abstract thinking it is possible to unlearn the conventions of classification that are inherited and to observe afresh, to form an individual understanding and to discover relations between objects which were previously unperceived.


radial_form(Fig 5)

Anderson, Gemma 2015. Radial Symmetry. Copper etching. (c) Anderson


Forms of Isomorphology can be realised in everyday observations: in a garden it is possible to observe the forms and symmetries in the plant life; bilateral leaves, branches, bilateral leaves on branches, and to ponder the possible combinations of the forms and symmetries. All of the Isomorphology forms and symmetries can be found in endless configurations in nature.

Training the eye to perceive abstractly and the mind to think creatively whilst simultaneously maintaining a strong connection to the individual specimen is a complex practice. I believe this understanding can be shared with others as a playful educational model, which challenges convention. Isomorphology encourages both learning and ‘unlearning’ – we are de-constructing inherited taxonomies in order to create new knowledge and new approaches.

The Isomorphology project demands close observation of each specimen and I would like to thank the Natural History Museum and Kew Gardens for allowing access to their collections.


Further information:



HAECKEL, Ernst. 2005. Art Forms from the Ocean : The Radiolarian Atlas of 1862. Munich: Prestel.

HOOKE, Robert. 1987. Micrographia: Or, some Physiological Descriptions of Minute Bodies made by Magnifying Glasses, with Observations and Inquiries Thereupon. Lincolnwood: Science Heritage.

THOMPSON, D’Arcy Wentworth. 1942. On Growth and Form. (2nd edn). Cambridge University Press.





Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: